Arquivos para 30 30UTC November 30UTC 1999

Learning Image Classification on embedding devices (ESP32-CAM)

ESP32-CAM: TinyML Image Classification - Fruits vs Veggies

More and more, we are facing an embedding machine learning revolution. And when we talk about Machine Learning (ML), the first thing that comes to mind is Image Classification, a kind of ML Hello World!

One of the most popular and affordable development boards that already integrates a camera is the ESP32-CAM, which combines an Espressif ESP32-S MCU chip with an ArduCam OV2640 camera.

image.png

The ESP32 chip is so powerful that it can even process images. It includes I2C, SPI, UART communications, and PWM and DAC outputs.

Parameters:

  • Working voltage: 4.75-5.25V
  • splash: Default 32Mbit
  • RAM: Internal 520KB + external 8MB PSRAM
  • Wi-Fi: 802.11b/g/n/e/i
  • Bluetooth: Bluetooth 4.2BR/EDR and BLE standard
  • Support interface (2Mbps): UART, SPI, I2C, PWM
  • Support TF card: maximum support 4G
  • IO port: 9
  • Serial port rate: default 115200bps
  • Spectrum range: 2400 ~2483.5MHz
  • Antenna form: onboard PCB antenna, gain 2dBi
  • Image output format: JPEG (only OV2640 support), BMP, GRAYSCALE
ESP32-S.jpeg

Below, the general board pinout:

image.png

Note that this device has not a USB-TTL Serial module integrated, so to upload a code to the ESP32-CAM will be necessary a special adapter as below:

FTDI Basic.png

Or a USB-TTL Serial Conversion Adapter as below:

If you want to learn about the ESP32-CAM, I strongly recommend the books and tutorials of Rui Santos.

Continue lendo…

Neste tutorial, capturaremos dados remotos como UV (radiação ultravioleta), temperatura e umidade do ar. Esses dados serão muito importantes e serão usados em uma futura Estação Meteorológica completa.

O diagrama de blocos mostra o que obteremos no final.

Continue lendo…

Neste tutorial, exploraremos  o ESP32, o mais novo dispositivo para uso no campo do IoT. Esta placa, desenvolvida pela Espressif, deverá ser a sucessora do ESP8266, devido ao seu baixo preço e excelentes recursos.

Mas é importante alertar que NEM TODAS as bibliotecas ou funções com que você está acostumado a trabalhar com ESP8266 e / ou Arduino estão funcionando nesta nova placa. Provavelmente isso ocorrerá em breve, mas neste momento ainda não estão todas. Confire regularmente o fórum do ESP para saber das atualizações: ESP 32 Forum WebPage.

Aqui, aprenderemos a como programar o ESP32 utilizando-se do Arduino IDE, explorando suas funções e bibliotecas mais comuns, apontar algumas das diferenças importantes com o ESP8266, bem como os novos recursos introduzidos neste grande chip.

Em suma, exploraremos:

  • Saída digital: piscar um LED
  • Entrada digital: leitura de um sensor de toque
  • Entrada analógica: leitura de uma tensão variável usando-se de um potenciômetro
  • Saída analógica: controlando o brilho de um LED
  • Saída Analógica: Controlando a posição de um Servo
  • Leitura de dados de temperatura / umidade utilizando-se de um sensor digital
  • Conectando-se à internet para obter o horário local
  • Receber dados de uma página web local simples, ligando / desligando um LED
  • Transmitir dados para uma simples webPage local
  • Incluir um OLED para apresentar localmente os dados capturados pelo sensor DHT (Temperatura e Umidade), bem como a hora local.

 

Continue lendo…

Exploraremos neste tutorial, como usar a Alexa, um assistente pessoal inteligente desenvolvido pela Amazon Lab126, popularizado pelo Amazon Echo e Echo-Dot.

Alexa é capaz de interação de voz, reprodução de música, fazer listas de tarefas, configurar alarmes, transmitir podcasts, tocar audiobooks e fornecer informações meteorológicas, de trânsito e outras informações em tempo real. Alexa também pode controlar vários dispositivos inteligentes usando-se como um hub de automação residencial. Vamos usar neste projeto, o “Echo-Dot”, que permite aos usuários ativar o dispositivo usando um wake-word (no caso, “Alexa”).

echo-dot features

No espaço da Domótica (automação residencial), Alexa pode interagir com vários dispositivos diferentes como Philips Hue, Belkin Wemo, SmartThings, etc. Em nosso caso, emularemos dispositivos do tipo WeMo, como estes mostrados abaixo (mas por apenas uma fração de seu preço):

WeMo

WeMo é uma série de produtos da Belkin International, Inc. que permitem aos usuários controlar eletrônicos domésticos de qualquer lugar. A suite de produtos inclui um interruptor, sensor de movimento, Insight Switch, interruptor de luz, câmera e app. O WeMo Switch (nosso caso aqui) pode ser conectado a qualquer tomada de casa, que pode ser controlada a partir de um iOS ou Android smartphone executando o WeMo App, via rede doméstica WiFi ou rede de telefonia móvel.

O diagrama abaixo mostra o que será desenvolvido em nosso projeto:

Home Automation Block Diagram V2E o vídeo abaixo, mostra como ficará o projeto ao final:

Continue lendo…

Continuemos nossa exploração pelo mundo do IoT, nas asas do NodeMCU! Neste tutorial, desenvolveremos uma estação meteorológica doméstica, onde se exibirá informações tais como temperatura e condições climáticas, tanto para o dia corrente quanto para os próximos 3 dias. Nossa estação também exibirá informações internas da casa, como temperatura e umidade relativa do ar.

O diagrama em blocos abaixo, nos dá uma visão geral sobre o projeto:

No vídeo abaixo, você pode ver como ficará o projeto final:

Continue lendo…

ArduFarmBot, o livro!

13 13-03:00 março 13-03:00 2017 — Deixe um comentário

Acaba de sair do forno o primeiro livro da série “Tutoriais MJRoBot”, o “ArduFarmBot: Automatizando uma horta de tomates com a ajuda da Internet das Coisas – IoT”.

O livro pode ser adquirido nas lojas do Kindle na Amazon:

book amazon

Por favor divulguem o livro e se gostaram, deixem um comentário na página da: Amazon.com.br

Caso encontrem erros ou tenham sugestões, por favor usem a area de mensagens aqui no blog, que procurarei corrigir nas próximas edições.

O livro usa o controlador eletrônico “ArduFarmBot” como base para o aprendizado de como se trabalhar tanto em HW quanto em SW, com: a) Displays do tipo LCD e OLED; b) LEDs e botões; c) Acionamento de bombas e lâmpadas via relés e d) Leitura de sensores tais como: DHT22 (temperatura e umidade relativa do ar), DS18B20 (temperatura do solo), YL69 (umidade do solo) e LDR (luminosidade).

Todas as principais etapas dos projetos são detalhadamente documentadas através de textos explicativos, diagramas de blocos, fotos coloridas de alta resolução, diagramas elétricos utilizando-se do aplicativo “Fritzing”, códigos completos armazenados no “GitHub” e vídeos do “YouTube”.

No livro, são desenvolvidas duas versões do controlador eletrônico “ArduFarmBot”, que a partir da captura de dados provenientes de uma horta de tomates, tais como temperatura do ar e solo, umidade relativa do ar, umidade do solo e luminosidade, decidem autonomamente a quantidade certa (e quando) uma plantação deve receber calor e água. O ArduFarmBot também permite a intervenção manual, tanto em forma local quanto remota via Internet, a fim de controlar o acionamento de uma bomba de água e de uma lâmpada elétrica, esta última para ser usada na geração de calor para as plantas.

O livro está dividido em 3 partes.

Na primeira parte, a partir do “Arduino Nano” de desenvolve uma versão tanto manual operada por botões, quanto automática do “ArduFarmBot”.

book1

Na segunda parte, se aprofunda no projeto da automação e introduz a operação remota através da criação de uma página na internet. O “ESP8266-01” é utilizado para a conexão “Wifi”, enviando dados para o serviço especializado em IoT, “ThingSpeak.com“.

book2

Na terceira parte, uma segunda versão do “ArduFarmBot” é desenvolvida, introduzindo o “NodeMCU ESP8266-12E”, um poderoso e versátil dispositivo para projetos em IoT, que substitui de forma integrada tanto o “Arduino Nano” quanto o “ESP8266-01”, utilizados nas partes anteriores do livro. Nesta última, se explora também uma nova plataforma de serviços do universo IoT, o “Blynk”.

book4

Espero que gostem! E se preparem para o Tutoriais MJRoBot 2: “Brincando com robôs”.

Não deixem de visitar e seguir minha página: MJRoBot.org no Facebook

Saludos desde el sur del mundo!

Nos vemos em meu próximo post!

Obrigado e um abração,

Marcelo

 

Algum tempo atrás, desenvolvemos aqui o projeto de um sistema de jardinagem totalmente automatizado: “ArduFarmBot: Controlando um tomateiro com a ajuda de um Arduino e Internet das coisas (IoT)“. As principais especificações originais serão mantidas nesta nova versão, o ArduFarmBot 2, porém agora o projeto será baseado nas plataformas de IoT: NodeMCU ESP8266BLYNK.

Com base em dados coletados de uma plantação qualquer tais como, temperatura e umidade, tanto do ar quanto do solo, o ArduFarmBot 2 decidirá a quantidade certa (e quando) o plantio deve receber calor e água. O sistema deverá também permitir a intervenção manual de um operador para controlar uma bomba de água e uma lâmpada elétrica para gerar calor para a plantação. Esta intervenção manual deverá ser possível de ser executada tanto no local como remotamente via Internet.

Em suma, o sistema deve receber como

A. ENTRADA

  • Sensores:
    • Temperatura do ar
    • Umidade Relativa ao Ar
    • Temperatura do solo
    • Umidade do solo
  • Botões:
    • Bomba ON / OFF
    • Lâmpada ON / OFF

B. SAÍDA:

  • Atuadores:
    • Relé para controle da bomba
    • Relé para controle de lâmpada
  • Mensagens automáticas devem ser enviadas na ocorrência de eventos, tais como:
    • Bomba LIGADA
    • Lâmpada LIGADA
    • Sistema off-line
  • Exibição de dados
    • Todos os dados analógicos e digitais devem estar disponíveis para avaliação imediata
  • Armazenamento de dados
    • Dados históricos devem ser armazenados remotamente

O diagrama de blocos abaixo mostra os principais componentes do projeto.

Continue lendo…

É incrível como hoje em dia podemos montar rapidamente um projeto de IoT utilizando-se apenas de um “chip” de uns poucos dólares e um aplicativo carregado em seu smartphone.

Neste tutorial também aprenderemos sobre um sensor digital de temperatura confiável e muito fácil de usar, o DS18B20.

Como mostrado no diagrama de bloco acima, os dados coletados pelo sensor serão enviados à Internet com a ajuda de um NodeMCU ESP8266-E e monitorados em um celular ou tablet utilizando-se o aplicativo Blynk.

Continue lendo…

IoT: Sensor de movimento com o NodeMCU e BLYNK

3 03-03:00 dezembro 03-03:00 2016 — 15 Comentários

 

Continue lendo…

LaserCat – IoT com NodeMCU e Blynk

3 03-03:00 dezembro 03-03:00 2016 — 2 Comentários

Exploraremos como controlar servos via internet, utilizando-se o NodeMCU ESP12-E e o Blynk.

Continue lendo...